top of page

Evolutionary optimization algorithms:
     Genetic Algorithm (GA)
     Teaching Learning Based Optimization (TLBO)
     Invasive Weed Optimization (IWO)
     Tabu Search (TS)
     Harmony Search (HS)
     Imperialist Competitive Algorithm (ICA)
     Simulated Annealing (SA)
     Firefly Algorithm (FA)
     Bio-geography-Based Optimization (BBO)
     Artificial Bee Colony (ABC)
     Bees Algorithm (BA)
     Cultural Algorithm (CA)
     Differential Evolution (DE)
     Shuffled Frog Leaping Algorithm (SFLA)
     Ant Colony Optimization (ACO)
     Particle Swarm Optimization (PSO)


Multi-objective optimization algorithms:
     Classical approaches to multi-objective optimization
     Non-dominated Sorting Genetic Algorithm II (NSGA-II)
     Multi-Objective Particle Swarm Optimization (MOPSO)
     Strength Pareto Evolutionary Algorithm (SPEA)
     Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)
     Pareto Envelope-based Selection Algorithm (PESA-II)


Data Mining:
     Preprocessing:
            Data Cleaning
            Data Integration
            Data Reduction
            Data Transformation

     Classification:
            Decision Tree (DT)
            Naive Bayesian Classifier
            k-Nearest Neighbor (KNN)
            Bayesian Networks
            Classification using optimization algorithms
            Classification using artificial neural networks

     Clustering:
            k-means
            k-medoids

     Dimensionality Reduction:
            Principal Component Analysis (PCA)
     Outlier Detection:
            Hotelling’s T2
     Future Selection
     Future Extraction
     Regression:
            Classical regression methods
            Artificial neural networks
            Markov Chain (MC)

     Wavelet transportation
     Data fusion


Machine Learning:
     Deep Learning
     Reinforcement Learning
     Adaptive Neuro-Fuzzy Inference System (ANFIS)
     Neural Gas Network
     Group Method of Data Handling (GMDH)
     Hopfield Neural Network
     Learning Vector Quantization (LVQ)
     Multi-Layer Perceptron (MLP)
     Principal Component Analysis (PCA)
     Radial Basis Function (RBF)
     Support Vector Machine (SVM)
     Self-Organizing Map (SOM)
     Gene Expression Programming (GEP)


Time series modeling:
     Preprocessing
     ARMA / ARIMA / ARIMAX
     Signal Processing


Basic concepts of image processing

bottom of page